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/ SUMMARY

A multigrid cell-vertex finite volume Euler method has been

used to calculate steady inviscid transonic flow past the ONERA M6

wing. The treatment of the far-field boundary conditions includes

the effect of velocity perturbations generated from Klunker's

analytic asymptotic solution to the transonic small-disturbance

equation. The geometry of the wing tip is modelled with three suc-

cessively finer C-0 grids. The results obtained show marked differ-

ences in compari.son with those obtained on C-H grids. They indicate

that a shock-wave mechanism can contribute to the generation of tip

vortices in compressible inviscid flow, and that for reliable pre-

diction of wing performance it is important to model well both the

wing-tip geometry and the flow around the tip. , ,
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* This paper was presented at IUTAM Symposium Transsonicum III,
G6ttingen, 24-27 May 1988.
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I INTRODUCTION

The work of Ni has been extended in two and three dimensions by Hall 2 and
3Salmond . Numerical solutions to the Euler equations for transonic lifting flows

past aerofoils and wings are obtained by approximating the steady flux balance

for each computational cell using values of the flow variables stored at the

vertices of each cell. A Lax-Wendroff time-stepping algorithm is used to update

each variable, with boundary conditions where appropriate, and these changes in

the solution are then used on coarser meshes to accelerate the convergence of the

solution to the steady state. This paper describes some recent developments,

mainly in the imposition of far-field boundary conditions and in the modelling of

the flow around the wing tip.

The usual practice in calculating the three-dimensional flow past a wing

has been to set conditions on the far-field boundary equal to the free-stream

conditions. This assumption is loosely justified by the knowledge that, except

in a wake, a disturbance would decay more rapidly with distance in three dimen-

sions than in two. Here, instead, we replace the free-stream conditions by a

three-dimensional far-field solution. For 'inflow' the conditions are derived

from the transonic small-disturbance approximation of Klunker 4 , while for 'out-

flow' a perturbation pressure related to the cross-flow in the numerical solution

is prescribed. The results are expected to be more accurate than those given by

assuming free-stream conditions and to provide an indication of the range of

validity of the latter assumption. Comparisons are shown for a range of distances

from the wing to the far-field boundary.

It is becoming recognised (for example, see Ref 5) that the resolution of

flow detail at the wing tip requires both the representation of the tip geometry

and the use of an appropriate grid around the tip. We outline here the steps

taken in generating C-O grids from C-H grids formed by spanwise stacking of two-

dimensional planar C-grids. Results are shown for calculations performed on the

ONERA M6 wing using both C-H grids and three successively finer C-O grids. We

begin however with an outline of the basic numerical method.

2 CELL VERTEX FINITE VOLUME EULER METHOD

Since only the steady state is of interest the unsteady Euler equations in

three dimensions are expressed in conservation form as the isenthalpic system

u + fku) + g(u) + h(u)z 0 , (I)_t zi -t -x -y -z

I..
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where the state vector u and the flux vectors f(u), 1(u), h(u) are given

as follows:

u Ov w I

Pu P + Pu2  ovu Owu

uf() g(u) = h(u)

Pv Puv p + IV ')WV

Ow Puw OVW p + w-

Here p is the density, u, v, w are Cartesian components of velocity and p

is the pressure given by Bernoulli's equation

-- ( - j(y - )(u2 + V
2 + w

2))
Y

where y is the ratio of specific heats, taken to be 1.4. The equations have

been non-dimensionalised with respect to a typical length, stagnation sound

speed and stagnation pressure.

Integrating equation (1) over a control element of volume V and using

the divergence theorem yields for the steady state the boundary integral (or

residual)

1 IJ(f,g,h).ds = 0 (2)

Dividing our region of physical space surrounding the wing into hexahedral cells

we seek to approximate equation (2) for each cell. ThQ fluxes through each of

the faces of a particular cell are calculated from the values of the flow vari-

ables stored at the vertices of that cell (see Fig 1) and are summed to give the

net flux into the cell.

Given an initial flow the steady solution u satisfying equation (2) for

all cells is obtained by a Lax-Wendroff time-marching algorithm. From

equation (I) the change in the solution, Sun  n+l n in time-step At is

given b f

' U 
=  
t~f 

+
gy 

+  
h. )  --)- _L "(u "_t 1-yfl" ' " (3)

2nmmmu-r -5X aua y3 t a ua



The two parts of the change 6u at the point P are calculated as follows (scQ

Fig 2). The first term in expression (3) is given by averaging the residuals (2)

for the eight cells surrounding P . The second term is recast by integrating

over the inner hexahedron surrounding P formed by the centres of the eight

cells. The divergence theorem again yields an integral over the surface of this

hexahedron, evaluated as before, the values of the flow variables used being

obtained as averages of the values at the vertices of the eight cells.

To prevent odd-even point decoupling and to capture shock-waves an arti-

ficial viscosity is added to 6u . Convergence acceleration is achieved using

local time-stepping and a multigrid procedure. Changes in the solution on the

coarse grids are interpolated linearly to the finer grids as previously but are

then smoothed by an averaging operator.

3 FAR-FIELD BOUNDARY CONDITIONS

In the present method the inflow condition is that the two components of

velocity in the plane locally tangential to the boundary are specified together

with an isentropy condition for the density. To determine corrections to the

free-stream condition in the far-field we firstly consider Klunker's expression

for the transonic small-disturbance potential $ at a point P(x,y,z) . In the

far-field Klunker shows that the dominant term is that representing the lifting

effects of the wing, namely the following integral over the wing surface (see

Fig 3)

op f Au I- +- 9dSwing (y -n) 2 + R

surface

where &, n are local coordinates on the wing and R
2 

= (x - ) + a2 (y-)2 +
32z

2 
wi 2 = 2

z with 6 - M. Au is interpreted here as the difference in pressure

between the upper and lower surfaces. Due to deficiencies in the potential model

SP is only a good approximation away from the wake, and in fact is only used top

generate perturbations to the velocities given at 'inflow'.

0 is differentiated to give expressions for the perturbations (&u,Sv,Sw)p

from the free-stream velocities (un,v,,w ). The resuiting integrals are evalu-

ated numerically for each point P on the 'inflow' part of the far-field bound-

arv. The modified velocities (u. + 5u, v + 8v, w + 6w) are then used to cal-

culae the two imposed components of the tangential velocity. If the perturba-

tions are set to zero we regain the free-stream boundary conditions.

-c
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At outflow a boundary condition on pressure p is assumed which includes

the effect of the component of velocity qn normal to the free-stream direction.

It can be shown that if variations in the function p/ Y are small, and if at

outflow
2 2 2 2 2u + V + W . q qn

where q_ is the free-stream velocity, then the Bernoulli equation can be

approximated by

.(py-l)/y - - 2)Y(Y-l)

This is the assumed condition.

4 WING TIP MODELLING

The stages in producing a C-O grid from the C-H grid comprising two-

dimensional planar C-grids stacked spanwise are as follows:

(i) discard the C-grids lying beyond the wing tip;

(ii) complete the surface closure for the M6 wing using circular arcs as

continuations of the wing generators. The (finest) surface grid has

each arc subdivided into 32 equal segments;

(iii) as sketched in Fig 4, rotate the C-grid corresponding to the tip

station 1800 about an axis running chordwise through the leading and

trailing edges. Equal subdivision of the arcs swept out provide the

field grid. Lines of semi-polar singularity are left along the axis

of rotation forward of the leading edge and aft of the trailing edge.

After these steps adjustments were made to produce the final grid. These inclu-

ded bending and packing of the C-grids to ensure smooth spanwise distributions,

the addition of a further 16 C-grids on the main wing, and contracting the grid

around the trailing edge of the tip where the tip radius is small. Thus from an

original C-H grid of 256 x 32 x 48 cells was produced a new C-O grid of

256 x 32 x 64 cells. Details of the medium grid (128 x 16 x 32) on the wing sur-

face near the tip are shown in Figs 5 and 6.

5 RESULTS

The numerical method was used in two forms, appropriate to the C-H and

C-0 grids, to calculate the flow past the ONERA M6 wing, with M = 0.84 and



= 3.06° . To evaluate the effect of the new boundary conditions the far-field
boundary was set at varying distances from the wing - 1.01, 1.69 and 3.37 spans

(3, 5 and l0 root chords respectively) - and the calculations performed with and

without the perturbations modifying the free-stream. The effect on CL  is shown

in Fig 7 for the calculations on the medium C-H and C-0 grids. With the free-

stream conditions the variation in CL  is around 3% while for the perturbed con-

ditions it is around 0.7%. All subsequent calculations were performed with the

perturbed conditions with the boundaries set at 1.69 spans.

Next we detail the comparison between the tin flows on the medium C-H and

C-O grids. The spanwise lift distributions in Fig 8 show a marked spike at the

tip for the calculation on the C-H grid, indicating a vortex. This is absent for

the calculation on the C-O grid and examination of the cross-flow shows little

sign of a vortex, although the cross-flows are much larger than for the C-H grid.

Shown in Figs 9 and 10 are the upper surface Mach number contours in the tip

region for the two cases. As might be expected the flows are very similar inboard

but quite different at the tip. For the calculation on the C-0 grid the contours

near the tip trailing edge indicate the presence of high velocities there.

Finally we compare the calculations performed on the successively finer

C-0 grids. Fig 11 shows the value of CL plotted against (number of cells)
- 2 /3

the straight line indicating second-order accuracy. The spanwise lift distribu-

tions are plotted in Fig 12. Note the small kink at the tip for the finest grid;

indeed (Fig 13) a plot of the cross-flow velocities obtained on this grid, very

close to the trailing edge (98.5% chord), shows a region of recirculating flow.

The production of the recirculating flow, or tip vortex, can be explained

by examining the cross-flow upstream. Having become sonic at about 89% chord the

cross-flow Mach number reaches 3.0 at 96.5% chord. A shock in the cross-flow

plane can be seen in the velocity vectors and in the contours of cross-flow Mach

number in Figs 14 and 15 obtained on the finest grid. The corresponding plot of

total vorticity contours in Fig 16 shows that while some vorticity is produced at

the junction of the circular arc with the wing generator, more is produced through

the shock-wave. This vorticity is convected downstream and may therefore be the

origin of the vortex shown, Further work needs to be done to assess whether

separation is occurring in addition.

The marked differences between the results on the C-0 grid and those on the

C-H grid have important practical implications. They show that the flow pattern

Iround the wing tip and the associated spanwise lift distribution are strongly
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misrepresented when calculations are performed on the cormnonly adopted C-H

grid. For reliable prediction of wing performance the wing-rip geometry and the

flow around the tip must be well modelled, at least for wings of low aspect ratij.

6 CONCLUSIONS

Improved far-field boundary conditions and wing tip midelling have been

proposed and tested. The boundary conditions allow the distance to the far-field

boundary to be reduced considerably with little change in lift. Calculations on

C-H and C-O grids show very marked differences in the flow at the wing tip, there

being a distinct tip vortex on the C-H grids. Although cross-flows are much

larger on the C-O grids there is little sign of a tip vortex except for the

finest grid. In this case a vortex appears to originate at least in part in

vorticity generated by a shock in the cross-flow. For reliable prediction of

wing performance it is important to model well both the wing-tip geometry and

the flow around the tip.
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Figs 71

Fig 1 A single hexahedral cell

Fig 2 The eight cells surrounding the point P

P(X.y,Z) xz

y 
0

Fig 3 Wing and a boundary point P for KtUniker's
integral over the wing surface

k ~ 3 ing edg

ieading edge

Fig 4 Sketch of construction of C-0 grid
from C-H grid by rotation



Figs 5-10

Fig 5 Surface grid at the wing tip

(leading edge)

Fig 6 Surface grid at the wing tip
(trailing edge)
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Fig 7 Variation of lift with position of Fig 8 Spanwise lift distributions for

far-field boundary calculations on the medium C-H
and C-O grids
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Fig 9 Mach contours on upper surface Fig 10 Mach contours on upper surface

for the calculation on the medium for the calculation on the medium

C-H grid (NI =0.04) C-O grid ,M = 0.04



Figs 11-16

256 x 32 x 64
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(number of cells) -~ 2J 10 3Normalised spanwise coordinate

Fig 11 Variation Of CL with refinement Fig 12 Variation of the spanwise lift
kof the C-0 grid distribution with refinement

of the C-0 grid

-. 1.04% chord .

0.52% chord i

Fig 13 Cross-flow velocity vectors at Fig 14 Cross-flow velocity vectors at
the wing tip very near the trailing the wing tip near the trailing
edge (98.5% chord) edge (96.5% chord)

1 041 c~lo

1~ 04'% ccordd

Fig 15 Cross-flowv Mach contours at Fig 16 Vorticity (IQ 1) contours at the
the wing tip near the trailing wing tip near the trailing edge
edge (96.5% hr) 9.ao chord)

Dotted line is sonic and .1 0.2(9.%cod
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